

BT4221 Advanced Analytics with Big Data Technologies

AY 2024/25 Semester 2

Predictive Modeling for Loan Default
Video Presentation: https://shorturl.at/LlJTl

Group 2 Final Report

Members: Matriculation Numbers:

AARON TEO YUAN CAI A0269646L

ALLAN CHRIS A0277031L

LEE WEI KIAT A0273289N

LIANG SHI YIN, MARCUS A0277877B

TAN KEE XIANG A0273340M

TONY KOO YE LONG A0269756H

https://shorturl.at/LlJTl

1. Problem Statement
With an increasing reliance on credit to fund purchases such as houses, automobiles, or even daily
essentials, it is becoming imperative for firms offering credit lines to manage their risks accordingly.
Organisations offering credit lines must handle their risks appropriately, given the growing dependence on
credit for purchases such as homes, cars, and daily necessities. One primary approach is to target
specific consumers based on their characteristics and adapt the loan line to their requirements and ability
to repay while increasing possible returns and avoiding risks. Otherwise, firms risk the danger of facing
similar historical global financial crises (GFC) such as the GFC 2008, where most firms took advantage of
repackaging intrinsically bad credit loans into seemingly investable graded mortgage-backed securities
(MBS) and sold them to firms and the general public. Consequently, this caused a cascade of firms to
collapse, such as Bear Stearns and Lehman Brothers. However, if more light had been shed on
borrowers' repayment abilities and their ability to repay the lender in the future, such unfortunate events
might have been avoided.

In this project, our group has decided to focus on the peer-to-peer (P2P) lending firms domain.
Particularly, our focus in this project is on Lending Club (LC), one of the world’s largest P2P firms. LC’s
primary business operations from 2007 to 2020 focused on providing loans to individuals and companies.
Given that LC's portfolio was mostly unsecured loans at about 91% (Figure A1), the group believed that
such an arrangement offered a more realistic picture of what elements drive borrowers' inability to make
repayments when compared to banks where borrowers are expected to submit collaterals and are
rigorously sieved out under tight criterias. At the same time, LC was chosen because it was a leading
player in the credit industry, and its data was more readily accessible than banks' data, which is more
obscure and difficult to obtain.

Ultimately, our group aims to forecast whether a borrower will default or be able to make timely payments.
This slightly differs from our original proposal due to insufficient delayed payments data, because late
payments took up only 0.75% of the total loan statuses. Employing the analysis of such data, the group
will be able to build a clearer image of the traits motivating a person's success or causing the company to
run into financial trouble. By analysing such information, the group can paint a clearer picture of the
characteristics driving up a borrower’s probability of default as well as hidden trends driving the profits
and losses. Such insights could give financial institutions like LC useful data for strategic planning,
including identifying the thin boundary between profit and risk. In foresight, this project will carefully make
use of Exploratory Data Analysis (EDA) practices, optimisation techniques, and Machine Learning (ML)
models such as Logistic Regression (LR) and Random Forest (RF) to extract useful information to help
LC gain an edge over its competitors.

2. Dataset
2.1 Source of dataset:
https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1/data

2.2 General description of the dataset
As a start, our group obtained the LC’s dataset from Kaggle on its loans from 2007 to 2020 Q3. The
dataset contains information about LC’’s customers with dimensions spanning 2,925,493 x 142 (rows,
cols) and a size of 1.7 GB. Each row represents a loan listing. The dataset consists of a multitude of
features that illustrate the characteristics of the loan, such as the loan amount and the interest rate, as
well as information on the borrower, such as their work, the length of their employment, and whether or
not they are experiencing financial difficulties. At its core, the dataset allows us to investigate the patterns,
trends, and potential factors influencing the possibility of default, such as focusing on borrowers’ marital
commitment and the loan’s structure.

2.3 How is this dataset appropriate for the problem statement
The dataset provided by Kaggle is suitable for our problem statement as it allows us to use the raw data
to help us identify whether a borrower will successfully make their payments or default. As the dataset

1

https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1/data

contains an abundance of information on the loan and borrower’s characteristics, the group can paint a
clearer picture of a person who may default on their payments.

2.4. Exploratory Data Analysis (EDA)
For EDA, our group began by exploring the dataset, encompassing its structure and features (Figure A5.1
& A5.2). One of the objectives of the EDA was to derive behavioural insights of lending institutions and
borrowers alike. To understand the patterns behind LC’s lending behaviour, we explored a plot of
revolving credit utilisation against credit limits. After scaling the axes to remove outliers, the scatter plot
generated (Figure B1) suggests that individuals with a lower credit limit have a much higher tendency to
have a revolving utilisation percentage exceeding 100%. A value exceeding 100% indicates that an
individual has borrowed more than their designated credit limit. Beyond a credit limit value of $125,000,
the spread of individuals with a utilisation exceeding 100% diminishes rapidly. This validates the tendency
of lending institutions are reluctant to offer additional money to individuals who have no credit available
when the absolute amount lent exceeds a certain point, reducing the impact of default.

To explore individuals ' borrowing behaviours, we examined the relationship between annual income and
the borrowed loan amount. After taking a sample to generate a visible scatterplot, the plot (Figure B2)
validates the expected trend that individuals with higher annual income generally loan more significant
amounts. However, some individuals in the lower annual income range (under $50,000) with loan
amounts high in proportion to their income remain. These are likely individuals at higher risk of defaulting.

Besides these insights, since the primary objective of our group’s analysis is to determine whether a
borrower will default on loan payments, our EDA also sought to analyse the relationships of potentially
key predictor variables with the ‘loan_status’ variable to gain insights into defaulters. Before examining
these predictors, after reducing the 11 categories in ‘loan_status’ down to 2, our preliminary analysis of
the variable distribution indicates a heavy skew towards loans paid on time (86.9% vs 13.1%), which may
require additional handling of the class imbalances (Figure B3).

In identifying the relationship of potential predictor variables with loan defaults, our group analysed trends
in the following variables: ‘purpose’, ‘grade’, and ‘dti’ against loan default rates. A quick peek on the
analysis of loan counts grouped accordingly to purpose and default status (Figure B4.1) indicates that
debt consolidation makes up the majority of loan purposes, accounting for the highest number of defaults.
When analysing the default rate by loan purpose (Figure B4.2), the highest default rates are those of
educational loans (36.1%) and small businesses (20.9%). Despite debt consolidation (14.1%) and credit
card loans (10.7%) reflecting among the middling and lower default rates, the distribution of the number of
loan defaults in Figure 4.1 indicates that most defaults stem from these purposes.

An analysis of the loan counts grouped by grade and default status (Figure B5.1) indicates that most
loans are issued in the top few grades (A - C), with declining counts for grades D and below, showcasing
how most of LendingClub’s loans have a lower default risk. However, most loan defaults by grades are
also clustered between grades B and D. The analysis of the default rate by loan grade (Figure B5.2)
reflects the expected trend, with lower default rates (3.8%) for higher grade loans, ranging upward to the
highest default rates (45.1%) for the lowest graded loans.

An analysis of the loan counts grouped by debt-to-income (DTI) ratio and default status (Figure B6.1)
indicates that the highest number of defaulters and individuals are between a DTI ratio of 0-30. The
further analysis of the default rate by the DTI ratio of individuals (Figure B6.2) indicates an upward trend
in the default rate (11.1%-16.4%) for DTI ratios between 0-40. For DTI ratios upwards of 40, the default
rate trends downwards, subverting expectations that individuals with a higher DTI and higher relative debt
will tend to default more. However, as observed in Figure 6.1, individuals with DTIs exceeding 40 make
up a small portion of the total individuals. As such, this anomaly may reflect insufficient statistical
power/sampling bias, where the data of this subgroup may not be a generalisable trend.

In preparation for data processing and cleaning, our group also analysed the feature cardinality of all the
features(Figure C1.1 & C1.2) and extracted features with high missing or null values (>=80%) (Figure A4).

2

3. Data Preparation & Cleaning​
3.1 How the Dataset was Cleaned
Before making any changes, the group carefully evaluated each feature based on contextual and
statistical knowledge. We used the following principles as indicators to help us make better decisions. A
summary has been included in the appendix for reference (Figure A2).
3.1.1 Missing Data
Specific columns in the dataset were missing before 2017 because LC had performed an outer join with
the data, resulting in the loss of numerous columns of data from 2007 to 2016. Therefore, we have
decided to discard data before 2017 to ensure that our data is consistent and complete.
3.1.2 Adding Flags
As some features contained NULL but were intended to be represented as “0” or “Not applicable”, we
reproduced additional columns to ameliorate this issue and prevent model training instability. An example
would be the “mths_since_last_delinq” column, whereby null means the user has never been delinquent.
3.1.3 Standardization
In some columns, some values meant the same thing but were represented differently. For instance, in
the Verification Status column, “Verified” was represented as “Source Verified” and “Verified”.
Inconsistencies like this were standardised to avoid misleading the model during training.
3.1.4 Removing Vague Values
Some values provided in the dataset were vague, lacked precise meaning or had irregular values. For
example, the value “ANY” appeared in the Home Ownership column, which could represent any home
ownership status. Entries as such were removed to ensure that only well-defined categories were used
for model training.
3.1.5 Fixing Format
As many columns had inconsistent formatting, our group had to tidy them before they were usable for
model training. Several columns, such as int_rate, were stored as strings due to the presence of “%”
symbols. Ultimately, these symbols were removed, and the respective column was converted to
appropriate numeric types, such as DoubleType, to enable accurate computations and modelling.
Additionally, several feature engineering steps were taken to enhance model performance. For example,
the mths_since_last_delinq column was binned into categorical intervals to reduce the number of
dimensions. Also, we created a binary flag to indicate the presence or absence of delinquency.

3.1.6 Feature Engineering
To enhance our models’ predictive powers, we engineered additional features to capture critical aspects
of borrower behaviours and financial health (Figure A3). These features offer a more holistic and nuanced
perspective of borrowers’ risks, enabling our ML models to perform informed and accurate predictions.

3.2 Deciding Factors to Keep or Discard Columns
The first deciding factor to discard certain features is based on dropping missing values. Since there were
numerous features with missing values greater than 80%, most of which depend on whether the borrower
is facing hardships, the majority class did not require it and, hence, was dropped (Figure A4). However,
we still need one feature to give importance to the hardship plan to capture the minority likely to default.
Hence, we decided to keep one of the features, hardship_reason, while dropping the remaining columns
with more than 80% missing values.

Moreover, the second deciding factor is based on our domain knowledge and online research. Looking at
the data dictionary of each feature, features that do not help predict a person’s defaulting on a loan are
dropped(Figure A5.1 & A5.2). Features such as dti, delinq_2yrs, il_util, and pub_rec_bankruptcies were
ultimately chosen as the group inherently felt that these features contribute to a borrower’s probability of
defaulting on the loan (Figure A6).

3

The third factor is based on whether the columns are considered post-event variables, which means the
variables would be available at the prediction point. For example, the columns “last_pymnt_amnt” and
total_rec_prncp(principal received to date) were removed as such features would not be known at the
time of prediction. Retaining these features would lead to data leakage, artificially inflating the model’s
performance and causing it to not generalise well to unseen data.

The last deciding factor is to leverage the correlation matrix to drop multicollinear features. Features with
a correlation of more than 0.8 were checked between the respective features and determined based on
which feature was more important to keep, with the other feature being dropped. Intrinsically, the rationale
for discarding highly correlated features before performing PCA is to address the curse of dimensionality.
Consequently, performing PCA after highly correlated variables are discarded can help relieve the burden
on the PCA and avoid capturing noise. According to Jolliffe (2002), multicollinearity can obscure the
interpretation of principal components and lead to components being dominated by highly correlated
variables. If highly correlated features were not dropped before PCA, the effectiveness of dimensionality
reduction​ would be reduced. Hence, removing highly correlated features beforehand improves the clarity
and efficiency of PCA.

3.3 Deciding Factors to Choose the Target Variable
Since we aim to predict customer defaults, selecting Loan Status as the target variable would be suitable.
It directly reflects whether a borrower has repaid or defaulted, enabling the subsequent models to
investigate historical patterns and make accurate predictions.

3.4 How Categorical Columns Were Handled
The categorical columns were converted to numerical values first using StringIndexers and afterwards
one-hot encoded using OneHotEncoding. Doing so ensures no inherent rankings between the different
categories, preventing the model from misinterpreting categorical variables as ordinal features.

3.5 Principal Component Analysis (PCA)
Due to the dataset's large volume and high dimensionality, we have performed PCA as part of the dataset
cleaning and preprocessing step. PCA helps to reduce the number of features by identifying the most
essential features that explain the most variance in the data. The threshold selected was 95%, meaning
we retained enough components to explain 95% of the variance in the dataset. By doing this, we have
reduced the total number of features from 83 to 62, addressing the curse of dimensionality while
preserving most of the original information.

3.6 Handling Class Imbalances
Most borrowers do not default, which makes sense unless the business fails to sustain itself as a credit
company; the minority class would be borrowers who default. As observed in our EDA (Figure B3), the
defaults comprise roughly 10% of the dataset. Training directly on an imbalanced dataset risks model bias
toward majority class predictions, which can inflate overall accuracy while severely underestimating the
model’s actual capability to detect defaulters. As such, handling class imbalance would be imperative to
ensure that models could effectively identify potential defaulters to prevent potential reduced profitability.
To mitigate such risks, our group has employed the following resampling strategies:
3.6.1 Synthetic Minority Over-sampling Technique (SMOTE)
SMOTE is an oversampling technique based on the K-nearest neighbours algorithm to generate synthetic
samples of the minority (default) class. By generating synthetic neighbours in the feature space, SMOTE
helps to increase the density of minority instances without having to replicate existing records.
Consequently, SMOTE assists classifiers in learning better decision boundaries for minority instances.
This improves model sensitivity (recall) and performance on evaluation metrics such as PR AUC rather
than optimising solely for accuracy (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Such improvements can
be particularly beneficial for classifiers like Logistic Regression (LG), Random Forest (RF), and Support
Vector Machines (SVM), which are often sensitive to class imbalance.

4

3.6.2 Adaptive Synthetic Sampling (ADASYN)
Similarly, ADASYN is an oversampling technique focusing on minority class instances that are harder to
learn, such as borderline or noisy samples. This technique can be effective, particularly for cases where
borrowers’ profiles are ambiguous between default and non-default. This is because ADASYN shifts the
focus onto such ambiguous instances to enhance recall without having to oversample well-represented
minority instances.
3.6.3 Tomek Links (TOMEK)
On the other hand, Tomek Links is an undersampling technique that removes overlapping majority class
samples close to the minority class. This reduces ambiguity at class boundaries, which can help models
like RF and SVM form more precise decision boundaries. This potentially reduces false positives and
improves precision, enhancing PR AUC.
3.6.4 Edited Nearest Neighbours (ENN)
Moreover, ENN is an undersampling technique to remove both majority and minority instances whose
class labels disagree with those of their nearest neighbours. ENN can eliminate mislabeled and noisy
records that may otherwise cause erratic decision boundaries for models such as decision trees. As a
result, ENN can enhance the model’s calibration and generalisation to unseen borrowers to improve recall
at low false-positive rates.
3.6.5 Why Random Under/Over Sampling May Be Superficial
Random oversampling techniques on the surface level just duplicate existing minority data randomly. It
provides no new information to the dataset and may result in overfitting. As for random undersampling,
the dataset’s majority data is being reduced randomly to match the ratio of the minority data better. This
may result in information loss on the majority of the dataset. Hence, random undersampling and
oversampling are not used as the techniques mentioned above are used to help address the limitations.

3.7 Sampling
Due to the limitations of Google Colab Pro and limited access to higher processing clusters, after trial and
error, our group has concluded that randomly sampling 5-10% of the data (approx. 100k rows) is the
sweet spot to train our models before running into memory errors. We will be using SMOTE, ADASYN,
TOMEK, ENN, SMOTE & ENN, and SMOTE & TOMEK for modelling and comparing the results of each
sampling method.

4. Machine Learning (ML) Models
Our group has decided to focus on the following six ML models for their varying algorithmic approaches to
provide a more diverse range of insights. These models include Logistic Regression, Naïve Bayes,
Decision Tree, Random Forest, Gradient-Boosted Trees, and Support Vector Machine. In this section, the
group will explain our rationale for choosing the respective models, their advantages, and their potential
drawbacks.

Our group adopted a structured model validation strategy to evaluate the upcoming models fairly.
PR_AUC, a commonly used metric for imbalanced classification problems, will be the primary metric to
assess the model's performance. This metric effectively allows the team to analyse the model's ability to
pick up potential defaulters correctly while minimising false alarms. Our secondary metric will be recall;
this is due to the nature of the project to identify potential defaults, which we felt takes precedence given
the possible severity of missing out on false positives, which could potentially harm credit companies’
ongoing concerns. Precision also remains vital to avoid falsely rejecting applicants who would pay back,
resulting in a loss of profits.

To interpret these metrics, A high PR_AUC indicates that the model can better identify defaults with
minimal false flags. At the same time, a high recall suggests that the model can detect most of the
defaulters. In contrast, high precision means that among all the customers predicted to default, a high
percentage are actual defaulters. Ideally, we would want all three metrics to be as high as possible, but
there will likely be situations where we must compromise one for the other. Therefore, selecting the best
model involves metrics balancing to minimise financial loss and ensuring profit maximisation.

5

Additionally, three-fold cross-validation will be performed for all of our models' training to ensure a reliable
and accurate estimate of the evaluation metrics. Three-fold cross-validation splits the data into three
subsets, changing the training and validation sets across iterations. It then takes the average of the
performance metrics, giving a more robust and unbiased estimate of the model’s effectiveness.

4.1 Logistic Regression
Since Logistic regression is commonly used for classification tasks, our group has decided to use it as the
fundamental model because of its simplicity and speed. It works by assigning a weight to each feature
and applying the sigmoid function to output a probability between 0 and 1. Logistic regression uses
gradient descent to find the optimal weights, updating its weights iteratively to minimise the loss function.
Regularisation techniques such as Ridge, LASSO, and Elastic Net can also improve generalisation and
prevent overfitting.

The base parameters used for logistic regression are: regParam = 0.01, elasticNetParam = 0.5, threshold
= 0.5, and maxIter = 100. Table D1 shows the results for each logistic regression model using the different
sampling methods. Based on the results shown in Table D1, the model performs the best when using
hybrid sampling (SMOTE & ENN).

Although the accuracy is high for the base random sampling method at 0.9128, its recall is very low at
0.0007, suggesting that the model is most likely biased towards predicting everything as payment on time.
This trend can also be observed for undersampling techniques like TomekLinks and ENN, indicating that
the undersampling may not be viable alone. As for SMOTE & ENN, the model achieved a high recall of
0.8655 and PR_AUC of 0.2116, but with a low accuracy of 0.4874 and a precision of 0.1308. This
approach is suitable for capturing possible defaults but comes at the cost of falsely flagging out
individuals. For SMOTE, ADASYN, and SMOTE & TomekLinks, the recall achieved is lower, ranging from
0.7187 to 0.7441, but with slightly higher precision, ranging from 0.1519 to 0.1561, and higher PR_AUC,
ranging from 0.2122 to 0.2154, compared to SMOTE & ENN. These approaches reduce the number of
false flags but also capture fewer defaults. Since our primary focus is capturing defaults while maintaining
a reasonable trade-off with precision, the most suitable sampling method would be SMOTE & ENN.

Using hybrid sampling with SMOTE & ENN, a grid search was used to find the best set of
hyperparameters for logistic regression. The grid is defined as follows: regParam = [1, 0.1, 0.01, 0.001]
and elasticNetParam = [0, 0.5, 1], and threshold = [0.3, 0.5, 0.7]. The best results were when regParam =
0.001, elasticNetParam = 0, and threshold = 0.3, as shown in Table D2. The recall improved significantly
at the cost of a drop-off in precision. This means the model predicts more defaults at the cost of falsely
flagging individuals paying on time.

4.2 Naïve Bayes
Furthermore, our group has explored the Naïve Bayes classifier to supplement our predictive prowess
further. Since Naïve Bayes is based on conditional probability and essentially the classifier infers each
feature as independent, it may not work well with extracting insights from the LC dataset. This is because
LC dataset’s borrower characteristics, such as income, FICO scores, and loan purposes, are often linked.
As a result, the independence assumption may not hold. Nevertheless, the model remains a valuable
benchmark for its computational efficiency, interpretability, and ability to uncover initial trends within the
data.

To ensure that the Naïve Bayes model performs optimally, we conducted hyperparameter tuning on the
best model using Grid Search with the smoothing parameter of [0.1, 0.5, 1.0, 1.5, 2.0] and model
evaluation using three cross-validation folds. In hindsight, the diverse range of smooth parameters helps
to mitigate the impact of zero probabilities by adjusting the probability estimates. At the same time, the
three-fold cross-validation ensures the generalisability of the selected smoothing parameter while
reducing risks of overfitting and ensuring that computational efficiency is not strained.

6

After extracting the performances from the model (Table D3), we can observe that Naïve Bayes struggles
to identify correct positive cases (precision) more than Logistic Regression, with ranges of 0.1260 to
0.1560 and recall ranging from 0.1070 to 0.7770 along with an accuracies of 0.4874 to 0.9128.
Additionally, Naïve Bayes obtained PR AUC scores ranging from 0.08830 to 0.08840. In essence, while
Naïve Bayes demonstrated stability across different sampling methods, its precision and PR AUC
performance remains comparatively weaker than Logistic Regression. This reflects the importance of
selecting models that can better capture feature interdependencies when modelling borrowers’ behaviour.

After conducting hyperparameter tuning using Grid Search and three-fold cross-validation on the
best-performing sampling method (SMOTE & ENN), we extracted the performances from the tuned Naïve
Bayes model (Table D4). The model achieved a precision of 0.1260, a recall of 0.7770, and a PR AUC of
0.08840. While the recall remains high to identify potential defaulters, the lowered precision may suggest
a trade-off with increased false positives. Nevertheless, Naïve Bayes maintains computational efficiency
and may be suitable where identifying defaults is prioritised over precision.

4.3 Decision Tree
With its tree-like structure, the decision tree model is intuitive when interpreting a classification problem.
The more critical the feature, the closer it will be to the tree's root. The features at the top of the tree
would gain the most information in distinguishing who will likely default and who will pay on time.
Moreover, Decision trees do not make assumptions about the data distribution, making them suitable for
big data with complex, non-linear relationships like our dataset.

The base parameters used for the decision tree are: maxDepth = 5, minInstancesPerNode = 1, and
impurity = gini. Table D5 shows the results for each decision tree model using the different sampling
methods. The accuracy of the base model is high at 0.9128 but has a very low recall of 0.0055,
suggesting that the model is more biased towards predicting on time than default. This trend is also
similar for the undersampling method as the base and undersampling model is trained on significantly
more on time label than default label. As for SMOTE, ADASYN, and SMOTE & TomekLinks have a lower
accuracy than the base and undersampling model ranging from 0.5580 to 0.5977 but higher recall ranging
from 0.6671 to 0.7409. Lastly, SMOTE & ENN although has a lower accuracy of 0.4448, it scored a
significantly higher recall at 0.8565 with slightly lower precision of 0.1209 than the oversample and
SMOTE & TomekLinks model. With a high recall and slightly lower precision, SMOTE & ENN has a
PR_AUC of 0.1299 which is between the range of PR_AUC of oversampling and SMOTE & TomekLinks
ranging 0.1237 to 0.1365. In conclusion, the model performs best when using hybrid sampling (SMOTE &
ENN) as it has the best recall and second best PR_AUC.

Using SMOTE & ENN, gridsearch was used to find the best hyperparameters. The grid is defined as
follows, and it is checked for the best model for each maxDepth with these configurations: MaxDepth = [3,
5, 8], minInstancesPerNode = [1, 5, 10] and impurity = [‘gini’, ‘entropy’]. After running the model, the best
results were when maxDepth = 8, minInstancesPerNode = 5 and impurity = gini, maxDepth = 3,
minInstancesPerNode = 1 and impurity = gini and the original base model at maxDepth = 5,
minInstancesPerNode = 1, and impurity = gini.

Table D6 shows that the grid search for maxDepth = 8 has increased the PR_AUC but decreased the
recall. This is likely to be caused by the decision tree trying to overfit the training data, which results in
making the model more complex and making more splits. More depth in the tree allows the decision tree
to learn the specific data of the on-time, which is generally easier to predict than that of defaulters. Hence,
having more depth in the decision tree makes it likely to have learned the on-time pattern, resulting in a
less effective model in identifying default cases and a decrease in recall.

For maxDepth = 3, the overall metrics for all are lower than the base model of maxDepth = 5, making it
worse. This means that at maxDepth 3, the tree is too shallow and cannot capture the critical distinctions
between the defaulters and on-time. Hence, the best model would still be the base model at maxDepth =
5, giving the most balanced result with higher recall than maxDepth = 8.

7

4.4 Random Forest (RF)
Random forest builds on the decision tree model by creating multiple decision trees during training.
Instead of relying on a single tree, RF aggregates the predictions of many trees, making it more robust
and accurate. This makes it suitable for our problem, as it helps to address the significant imbalance of
default and on-time payments by helping prevent overfitting and improving the model’s generalisation to
unseen data. It is also suitable since it can capture complex patterns in borrower characteristics.

The base parameters used for the random forest model are (numTrees: 50, maxDepths: 10, maxBins: 32,
featureSubsetStrategy: “auto”, impurity: “gini”). Table D7 shows the results for each random forest model
using the different sampling methods. Based on the results, the model performs best using hybrid
sampling (SMOTE & ENN) with the best recall and decent precision. It has a recall of 0.8242, F1_Score
of 0.2305 and PR_AUC of 0.1883.

Using hybrid sampling with SMOTE & ENN (Table D8), gridsearch was used to find the best set of
hyperparameters for logistic regression. The grid defined is as follows: numTrees = [25, 50], maxDepth =
[5,10], maxBins = [16,32], featureSubsetStrategy = [‘auto’,’ sqrt’,’log2’], impurity = [‘gini’,’ entropy’]. The
best results were when numTrees = 50, maxDepth = 10, maxBins = 16, featureSubsetStrategy = ‘sqrt’
and impurity = ‘gini’. Virtually, the PR_AUC increased slightly (0.0007), recall improved from 0.8242 to
0.8261 (0.0019), and precision dropped by 0.0003. Unfortunately, due to memory limitations, the
numTrees and maxDepth hyperparameters cannot run values greater than 50 and 10, respectively.

4.5 Gradient Boosted Tree (GBT)
GBT (GBTClassifier) builds an ensemble of decision trees, but each new tree is trained to fix the errors of
the previous trees. Unlike RF, which trains trees independently and aggregates their results, GBT trains
trees sequentially, with each tree focusing on the residuals of the previous ensemble. This implementation
in PySpark uses stochastic gradient boosting and subsampling of previous trees to reduce overfitting. It
minimises a loss function by using gradient descent across the trees. This sequential learning approach
can help predict rare cases (default) better and boost the influence of minority cases during training.

The baseline models are trained using default parameters to evaluate which sampling technique is the
best. Hence, in Table D10, it was that SMOTE & ENN is the most optimal because while all resample
techniques results with the PR_AUC ranges from 0.1681 to 0.2381, SMOTE & ENN has the highest
recall, while the other resampling techniques that have higher PR_AUC have recall less than 0.1,
meaning the model was unable to detect defaulters. Though using SMOTE & ENN sacrifices accuracy,
we aim to spot the defaulters. Hence, the hybrid sampling SMOTE & ENN was deemed the most optimal.

Using hybrid sampling with SMOTE & ENN, a grid search was used to find the best set of
hyperparameters for GBT. The grid is defined as maxDepth = [5,7], maxIter = [20,30] and stepSize =[0.05,
0.1]. The maxDepth controls the maximum depth of each tree, increasing this to capture more complex
patterns but risking overfitting. maxIter controls the number of boosting iterations, where more iterations
lead to better performance but increase training time and risk of overfitting. Lastly, stepSize refers to the
learning rate, which controls how much each tree contributes to the final prediction; a too high learning
rate can overshoot the optimal solution.

After Grid Search, these hyperparameters: (maxDepth = 7, numTrees = 30, stepSize = 0.1), gave the
optimal PR_AUC (0.1841). The final GBTClassifier, as seen in Table D11, achieved a recall (0.7451),
indicating that it is highly effective at identifying potential defaulters. However, this comes at the cost of
precision (0.1376), suggesting a higher rate of false positives. The F1-score of 0.2324 reflects this
trade-off, which is acceptable given the goal of minimising undetected defaults.

4.6 Support Vector Machine (SVM)
Support Vector Machines (SVMs) seek an optimal hyperplane that maximises the margin between
classes in a high-dimensional space. They are effective in high-dimensional spaces, such as
PCA-reduced data, while resisting overfitting. However, since PySpark’s LinearSvc is designed for linear
classification, it cannot model non-linear relationships between features and the target variable. As such,

8

if non-linear relationships exist within the PCA-transformed feature space, other models may be better
suited to capturing them.

The base model had the following hyperparameters (maxIter=50 and regParam=0.1): The maxIter
parameter controls the maximum number of optimisation iterations, balancing model convergence with
training times. The regParam parameter controls the regularisation strength of the model, penalising
significant coefficients to prevent overfitting. This balances the smoothening of decision boundaries with
model overfitting.

As shown in Table D12, the base model performance of a high accuracy (0.9131) but near-zero recall
(0.0062) indicates severe bias toward the majority class, demonstrating the model’s ineffectiveness in
predicting defaulters. The SMOTE and SMOTE & TomekLinks models have almost identical results,
sharing a similar training dataset. SMOTE & TomekLinks removed a negligible 21 samples from the
majority class, reflecting their near-identical results with the SMOTE model.

Among the models (Table D12), the SMOTE model stands out with its balance between recall (0.6999)
and accuracy (0.6352) while also having the best PR_AUC value (0.1874). The SMOTE & ENN model
also has a comparable PR_AUC value (0.1706) with the SMOTE model while boasting a significant recall
advantage (0.9068 vs 0.6999) over the SMOTE model.

Using both SMOTE and a hybrid sampling of SMOTE & ENN, a grid search was conducted with the
following hyperparameter values: maxIter [50,100] and regParam [0.05, 0.1, 0.5], validated with a
three-fold cross-validation.

Both models (Table D13) had the same best hyperparameters of maxIter=100 and regParam=0.5, and
both models improved in the PR_AUC metric. Despite SMOTE and ENN having a very high recall score,
they have low precision and are less practical in a real-world setting. As there is a significant tradeoff in
denying profitable loans, the SMOTE model is better suited with its balance of precision and superior
overall PR_AUC.

4.7 Best ML Model Among the Six
4.7.1 Selecting the Best Model (Random Forest)
After analysing the best performances for each model type in Table D14, the group concluded that the
Random Forest model performs best. While models like Logistic Regression and Decision Tree
displayed their ability to capture defaulters with a high recall, their precision was simply too low. The
scores suggest that the model overpredicts the minority class, which is the default class in this case,
resulting in many false alarms. This one-sided behaviour exhibited makes it unsuitable for real-world
applications. As expected, because of its independence assumption, Naive Bayes has the worst
performance overall, achieving low recall and precision scores. As for Gradient-Boosted Tree and
Support Vector Machines, while their precisions are higher, their recalls are not ideal compared to
Random Forest, suggesting that they cannot capture default classes well. After careful analysis of the
results, the team believes that the Random Forest model has the most balanced performance, being able
to capture most defaulters with minimal false alarms. Therefore, the team decided to make further
improvements and analysis to the Random Forest model.
4.7.2 Feature Selection for Best Model (Random Forest)
Performing feature importance on the Random Forest model would return these Principal
Components(PC) in Figure D15. However, since each PC is a linear combination of each original column,
we cannot evaluate what each PC means. Therefore, we start by extracting the PCA loadings (Figure
D16), indicating how strongly each original feature contributes to each PC. However, the categorical
values are not represented well since it was one-hot encoded. Henceforth, the sum of the absolute
loadings of each categorical value was grouped back into their original features. For example,
grade_encoded_0, grade_encoded_1, and grade_encoded_2 will be combined and represented as
“grade” instead. This transformation allows us to easily identify the most essential features in the PC,
giving us a clearer understanding of which features are the most important.

9

Looking at the highest importance PC, PC5, the top five representations are mths_since_last_delinq
(0.274), grade (0.492665), hardship_flag (0.355), hardship_reason (1.192), and home_ownership (0.294).
From PC5, it is clear that hardship_reason is the most dominant feature with the most extensive loading.
This indicates that PC5 is primarily influenced by factors related to a borrower’s hardship situation. Grade
and home_ownership also contribute to PCs, but at a lower rate. PC5 could be interpreted as “Borrower’s
Hardship” since it contains hardship-related characteristics.

Next, using the formula of PC importance and PCA Loadings, the results were multiplied to attain the
overall weighted importance for each original feature (Figure D17). This avoids treating all PCs equally,
ensuring that features influencing more important PCs are weighted more, resulting in a more accurate
and meaningful ranking for the feature importance. From the results, hardship_reason, purpose, grade,
mths_since_last_delinq, and home_ownership are the most influential features for the random forest
model.

After determining feature importance, a random forest model was re-trained without the bottom 10
features shown in Figure D17. Removing the least essential features could be helpful as their presence
does not contribute to the model's predictive power and could even introduce noise, reducing the model's
accuracy. Moreover, it takes up additional computational resources, leading to longer training time. Table
D9 shows the results of the model trained without the bottom 10 features. Based on the table, even
though there is a slight increase in accuracy, F1_Score, and PR_AUC, it led to a drop in recall. Even
though the model without feature selection is more balanced overall, recall is critical in our context, and
failing to identify potential defaulters could lead to significant financial risk. Therefore, the original model is
preferred since it achieves a higher recall and can catch more defaulters.

5. Discussion of Results
5.1 Insights
5.1.1 Evaluation of “Test” Results
To ensure a fair and unbiased evaluation of the model performance, we retrieved 20% (200,807 rows) of
the unused data from the remaining 95% left from sampling and used it for evaluation purposes. As
shown in Table 18, the performance on the final test set is similar to the original test set. Key evaluation
metrics such as PR_AU, recall, and precision remain identical, suggesting that the model could
generalise well and perform well against unseen data. Following this, we plotted the predictions to
analyse the correct and incorrect predictions for the top features identified earlier.
5.1.2 Hardship_reason (Figure E1)
Starting from hardship_reason, which has the highest weighted importance, we notice that most
predictions are under the “NA” category. Despite the skew, the model can correctly classify less frequent
categories like income_curtailment and unemployed, suggesting that it can accurately predict hardship.
5.1.3 Loan Purpose Prediction (Figure E2)
The following important feature, loan purpose, shows many true negatives in categories like credit_card
and debt_consolidation. However, the model makes many default predictions, leading to many false
positives, indicating misclassification of on-time borrowers as defaulters. However, false negatives are
minimal across the categories, supporting the model’s high recall.
5.1.4 Grade Prediction (Figure E3)
Higher grades like “A” have the model predicting mainly on time. Even though the model attempted to
predict defaults, it could not accurately do so for grade A. In contrast, grades B, C, and D show cases
where the model could predict defaults more accurately at the cost of increased false positives. The
imbalance between false and accurate predictions highlights the model’s tendency to over-predict default;
however, given the context, it may be acceptable, as false positives are less costly than false negatives.
5.1.5 Mths_since_last_delinq (Figure E4)
The results performed the same across all delinquency categories, with the most predictions on false
positives, followed by true negatives, true positives, and very few false negatives. This suggests that

10

historical delinquency alone may not be sufficient for determining defaulters, and new features may be
needed to improve the model.
5.1.6 Home_ownership (Figure E5)
The RENT group has the highest number of true positive from the homeownership categoriess,
suggesting that the model effectively predicts defaulters who rent their houses. The model is better at
predicting on-time customers in the MORTGAGE group, while not performing as well in the own group.

5.2 Challenges
5.2.1 Computational Limits
Google Colab’s out-of-memory error was a common challenge, especially when using a large dataset or
complex models. Colab only offers limited resources, such as RAM, to free-tier users, which will
disconnect or crash the runtime when the limits are exceeded. To mitigate this issue, the data for model
training was sampled, variable references were deleted before training the next model, and/or multiple
sessions were created to ensure the limit was not reached unexpectedly.
5.2.2 Limitations of Fine-Tuning the Models
Similarly, due to computational limits, hyperparameter tuning for some models was difficult, as some
hyperparameters could not be computed, leading to crashes or indefinite run times. Thus, the parameter
grid had to be minimised for computational reasons.
5.2.3 Lack of PySpark Tools for Imbalanced Data
There is an issue of imbalanced class when it comes to identifying loan defaults. In the dataset, the
majority of loans were classified as usual, while defaults were of a much smaller proportion. To tackle this,
a resampling technique needed to be done. Python libraries like imbalanced-learn offer a variety of
techniques, such as SMOTE, ADASYN, and hybrid methods, to address this issue. However, similar
libraries are not integrated into PySpark. Thus, to implement this, the Spark DataFrame had to be
converted into a Pandas DataFrame and then converted back into a Spark DataFrame for the modelling
after the resampling was completed.

5.3 Assumptions
5.3.1. Late Payments Are Categorised as Defaults
Due to insufficient delayed payments data, where late payments took up only 0.75% of the total loan
statuses, we decided to consolidate them together with default, as late payments often foreshadow
impending defaults.
5.3.2. Assumptions Regarding PCA and Information Preserved
Our project uses PCA for dimensionality reduction, assuming that the principal components capturing the
most variance also retain the most helpful information for predicting loan default. By retaining 95% of the
variance, we can preserve the essential predictors in categorising default and on-time borrowers.
5.3.3. Data Sampling Due to Computational Constraints
Due to the computation limitation, our decision to sample 5-10% of the data was necessary to relieve
computational burdens. Given the sample, we assume that while using the full dataset would be ideal, the
chosen random sampling is sufficient to capture underlying patterns and train reasonably robust models.
5.3.4 Dataset Accuracy
Our project assumes the dataset is accurate, particularly regarding whether a borrower has defaulted.
These labels are critical for the modelling process, and any mistakes in these labels can potentially affect
the model’s reliability and performance.

5.4 Improvements
5.4.1. Leveraging the Full Dataset
Since our current analysis is based on a 5% sample due to the computational constraint, utilising the
entire dataset would enable a more comprehensive and representative understanding of the underlying
patterns. More data would also allow our model to learn a more robust and generalised relationship,

11

capturing subtle but essential signals that might be missed in smaller samples. Hence, the increase in
data would allow for more reliable model training and evaluation, leading to more confident and accurate
predictions of loan default risk.
5.4.2. Explore More Complex Models
While traditional machine learning models like Logistic Regression and Random Forest can capture many
patterns from the data, exploring more complex models such as neural networks offers the potential for
even more sophisticated modelling capabilities, better suited to learn the increasingly complex and
non-linear relationship between features
5.4.3. Threshold Optimisation
A more detailed analysis of the optimal threshold for the classification model could be conducted based
on the precision-recall curve. The optimal threshold should be set to address the Lending Club’s business
needs and risk tolerance. This data-driven approach will ensure the model's predictions are utilised to
maximise value and minimise potential negative impacts.

6. How can these insights help Lending Club?
Combining everything, our findings can provide LC with robust, data-driven insights to enhance risk
management. With the Random Forest model (Table D8) achieving a recall of 0.8261 and a PR AUC of
0.1890, the model offers LC a channel to identify potential defaulters early for improved loan approval
processes. Since the analysis revealed that borrowers in lower loan grades, such as grade G, face default
rates as high as 45.1%, in contrast to 3.8% in higher loan grades (e.g., grade A), it is recommended for
LC to focus its efforts to tailor accordingly for lower-graded borrowers. Similarly, as default risks increase
with debt-to-income (DTI) ratios, peaking at 16.3% between 30 and 40, it provides an avenue for LC to
explore potential strategies that can improve both returns and risk exposure. Fundamentally, these
insights point to an opportunity for LC to adopt a tiered risk-pricing model to offer competitive rates for
different types of borrowers. To paint a clearer picture, risk mitigation can be achieved either by tightening
eligibility criteria or applying higher interest rates to riskier segments. Essentially, this approach can
improve profitability while mitigating LC’s credit risks.

As features such as home_ownership, loan_purpose, and hardship_flags emerged as significant
predictors of default, they provide a glimpse of the various borrower and loan characteristics that LC
should focus on to manage risks more effectively. For instance, customers who rent instead of owning
their own homes showed the highest true positive rates for default. On the other hand, hardship indicators
like income_curtailment were simultaneously flagged out by the model. Instrumentally, Lending Club can
leverage on these findings to develop more granular borrower profiles. Afterwards, the company can
refine its targeting strategies accordingly. To further add value, LC can prioritise applicants with mortgage
ownership or stable employment, along with those borrowing for small business or educational purposes,
as these profiles may offer better risk-return balances. By integrating these insights into its customer
acquisition processes, LC can reduce non-performing loans, improve investor confidence, while creating
a more sustainable, risk-adjusted lending portfolio.

Ultimately, our end-to-end ML pipeline, from EDA to model optimisation and finally, evaluation,
demonstrates how ML can empower credit firms like LC to make more informed decisions. By translating
raw data through a series of intense refinements, pure numerical and categorical data can be transformed
into value-adding, actionable insights. Despite the numerous limitations our group has faced, we were
able to produce insights that can set the ball rolling for credit firms such as LC to mitigate risks more
effectively. If given access to higher computational resources, we firmly believe that our group could
produce industrial-level insights that add immense value to credit firms. Ultimately, our group reckons that
by adopting data-driven strategies like ours, credit firms such as LC can set the tone of a firm that is able
to draw the delicate balance between profits and risks to prevent another financial catastrophe like the
2008 crisis from happening again.

12

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority

Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.
https://doi.org/10.1613/jair.953

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer. https://doi.org/10.1007/b9883

Juez-Gil, M., Arnaiz-González, Á., Rodríguez, J. J., López-Nozal, C., & García-Osorio, C. (2021).

Approx-SMOTE: Fast SMOTE for Big Data on Apache Spark. Neurocomputing, 464, 432–437.
https://doi.org/10.1016/j.neucom.2021.08.086

Swastik. (2025, April 4). Overcoming class imbalance using SMOTE techniques. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniq
ues/

13

https://doi.org/10.1613/jair.953
https://doi.org/10.1007/b9883
https://doi.org/10.1016/j.neucom.2021.08.086
https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/
https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/

Appendix A: Dataset

Figure A1: LC’s portfolio as of Q3 2022

https://s24.q4cdn.com/758918714/files/doc_financials/2022/q3/LendingClub-3Q22-Earnings-Releas
e.pdf

14

https://s24.q4cdn.com/758918714/files/doc_financials/2022/q3/LendingClub-3Q22-Earnings-Release.pdf
https://s24.q4cdn.com/758918714/files/doc_financials/2022/q3/LendingClub-3Q22-Earnings-Release.pdf

Figure A2: A summary of the data cleaned

15

New feature Formula Rationale

credit_util_ratio Tot_cur_bal / tot_hi_cred_lim Measures how much of their available
credit a borrower is using. A higher ratio
may indicate a higher credit risk, as the
borrower is closer to their credit limit.
Helpful in assessing financial stress
levels.

income_to_loan_ratio Annual_inc / loan_amnt Evaluates the borrower's ability to repay
the loan. A higher ratio suggests the
borrower earns significantly more than
the loan amount requested, implying a
lower risk of default.

installment_to_income_ratio Instalment / annual_inc Assesses the burden of the monthly
loan instalment relative to monthly
income. A higher value indicates that a
larger portion of the borrower's income
is tied to loan repayment, signalling
potential difficulty in repayment.

Figure A3: Newly Engineered Features

Figure A4: Features with Missing Values (>= 80%)

16

Figure A5.1: LC Data Dictionary (Part 1)

17

Figure A5.2: LC Data Dictionary (Part 2)

18

Figure A6: Features used for model building

19

Appendix B: EDA Graphs

Figure B1: Revolving Credit Utilisation vs Total Credit Limit

Figure B2: Loan Amount vs Annual Income

20

Figure B3: Distribution of Loans

21

Figure B4.1: Loan Counts grouped by Purpose and Default Status

Figure B4.2: Default Rate vs Loan Purpose

22

Figure B5.1: Loan Counts grouped by Grade and Default Status

Figure B5.2: Default Rate vs Loan Grade

23

Figure B6.1: Loan Counts grouped by DTI Ratios and Default Status

Figure B6.2: Default Rate vs Debt-To-Income (DTI) Ratio

24

Appendix C: Data Cleaning & Preparation

Figure C1.1: Feature Cardinality

25

Figure C1.2: Feature Cardinality (Continued)

26

Appendix D: Modelling

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base 0.9128 0.4000 0.0007 0.0014 0.7303 0.2043

SMOTE 0.6370 0.1561 0.7187 0.2565 0.7372 0.2154

ADASYN 0.6157 0.1519 0.7441 0.2523 0.7367 0.2122

TomekLinks 0.9128 0.4000 0.0012 0.0024 0.7308 0.2054

ENN 0.9115 0.4140 0.03759 0.0689 0.7331 0.2095

SMOTE &
ENN

0.4874 0.1308 0.8655 0.2273 0.7370 0.2116

SMOTE &
TomekLinks

0.6370 0.1561 0.7188 0.2565 0.7372 0.2154

Table D1: Logistic Regression (Sampling Techniques)

Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

0.3494 0.1127 0.9404 0.2012 0.7366 0.2148

Table D2: Logistic Regression - Best Model Grid Searched

27

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base Model 0.8770 0.1550 0.0929 0.1160 0.5010 0.08840

SMOTE 0.7130 0.1560 0.5210 0.2400 0.5006 0.08840

ADASYN 0.6180 0.1390 0.6570 0.2300 0.5000 0.08830

TomekLinks 0.8760 0.1540 0.0942 0.1169 0.5006 0.08840

ENN 0.8710 0.1560 0.1070 0.1270 0.5006 0.08840

SMOTE &
ENN

0.5110 0.1260 0.7770 0.2170 0.5006 0.08840

SMOTE &
TomekLinks

0.7130 0.1560 0.5210 0.2400 0.5006 0.08840

Table D3: Naïve Bayes (Sampling Techniques)
Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

0.5110 0.1260 0.7770 0.2170 0.5006 0.08840

Table D4: Naïve Bayes Result - Best Model Grid Searched

28

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base Model 0.9128 0.4755 0.0055 0.0108 0.4582 0.0806

SMOTE 0.5786 0.1348 0.7085 0.2266 0.6314 0.1365

ADASYN 0.5977 0.1347 0.6671 0.2242 0.5914 0.1256

TomekLinks 0.9121 0.4016 0.0176 0.0337 0.4560 0.0803

ENN 0.9092 0.3713 0.0611 0.1050 0.4564 0.0803

SMOTE &
ENN

0.4448 0.1209 0.8565 0.2119 0.6482 0.1299

SMOTE &
TomekLinks

0.5580 0.1334 0.7409 0.2261 0.6155 0.1237

Table D5: Decision Tree (Sampling Techniques)

Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

(maxDepth
= 8)

0.5026 0.1264 0.7966 0.2182 0.6295 0.1471

SMOTE &
ENN

(maxDepth
= 3)

0.4351 0.1177 0.8437 0.2065 0.6402 0.1285

Table D6: Decision Tree - Best Model Grid Searched

29

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base Model 0.9131 0.7153 0.0042 0.0085 0.7281 0.2103

SMOTE 0.6631 0.1524 0.6283 0.2452 0.7092 0.1873

ADASYN 0.6811 0.1588 0.6187 0.2527 0.7165 0.1865

TomekLinks 0.9131 0.5877 0.0079 0.0155 0.7271 0.2084

ENN 0.9080 0.3599 0.0713 0.1192 0.7146 0.1991

SMOTE &
ENN

0.5205 0.1340 0.8242 0.2305 0.7212 0.1883

SMOTE &
TomekLinks

0.6949 0.1617 0.5981 0.2546 0.7202 0.1904

Table D7: Random Tree (Sampling Techniques)
Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

0.5184 0.1337 0.8261 0.2301 0.7206 0.1890

Table D8: RandomTree - Best Model Grid Searched

Feature Importance:

Feature
Selection

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

0.5369 0.1367 0.8117 0.2340 0.7206 0.1902

Table D9: Random Forest - Post Feature Importance

30

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base Model 0.9128 0.4673 0.0062 0.0123 0.7306 0.2106

SMOTE 0.6590 0.1512 0.6314 0.2440 0.7046 0.1814

ADASYN 0.6496 0.1467 0.6271 0.2378 0.6953 0.1681

TomekLinks 0.9135 0.6119 0.0188 0.0365 0.7505 0.2381

ENN 0.9069 0.3728 0.0999 0.1575 0.7491 0.2321

SMOTE &
ENN

0.5242 0.1327 0.8060 0.2280 0.7131 0.1871

SMOTE &
TomekLinks

0.6572 0.1514 0.6373 0.2447 0.7070 0.1838

Table D10: GBTClasssifier (Sampling Techniques)

Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

0.5711 0.1376 0.7451 0.2324 0.7050 0.1841

Table D11: GBTClassifier - Best Model Grid Searched

31

Sampling
Method

 (50,0.1)

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Base 0.9131 0.6356 0.0062 0.0123 0.6350 0.1543

SMOTE 0.6352 0.1526 0.6999 0.2506 0.7230 0.1874

ADASYN 0.6326 0.1526 0.7065 0.2510 0.7239 0.1867

TomekLinks 0.9131 0.6298 0.0057 0.0113 0.6399 0.1634

ENN 0.9117 0.4133 0.0328 0.0607 0.6193 0.1588

SMOTE &
ENN

0.4029 0.1182 0.9068 0.2092 0.7122 0.1706

SMOTE &
TomekLinks

0.6352 0.1526 0.6999 0.2506 0.7230 0.1874

Table D12: Support Vector Machine (Sampling Techniques)

Grid Search:

Sampling
Method

Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

SMOTE &
ENN

(100, 0.5)

0.3397 0.1115 0.9441 0.1995 0.7262 0.1870

SMOTE
(100, 0.5)

0.6332 0.1537 0.7122 0.2528 0.7295 0.2064

Table D13: Support Vector Machine - Best Model Grid Searched

32

Best Model Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Logreg 0.3494 0.1127 0.9404 0.2012 0.7366 0.2148

Naïve 0.5110 0.1260 0.7770 0.2170 0.5006 0.0884

DT 0.4448 0.1209 0.8565 0.2119 0.6482 0.1299

RF 0.5184 0.1337 0.8261 0.2301 0.7206 0.1890

GBT 0.5711 0.1376 0.7451 0.2324 0.7050 0.1841

SVM 0.6332 0.1537 0.7122 0.2528 0.7295 0.2064

Table D14: Best Model Overview

Figure D15: Feature Importances

33

Figure D16 : PCA Loadings

Figure D17: Weighted Importance of features

34

Best Model Accuracy Precision Recall F1_Score ROC_AUC PR_AUC

Old “Test”
Set

0.5184 0.1337 0.8261 0.2301 0.7206 0.1890

Final Test
Set

0.5357 0.1342 0.8099 0.2302 0.7228 0.1893

Table 18: Best Model Test Data Evaluation

35

Appendix E: Insights

Figure E1: Hardship Reason Prediction

Figure E2: Loan Purpose Prediction

36

Figure E3: Grade Prediction

Figure E4: Mths_since_last_delinq Prediction

37

Figure E5: home_ownership Predictions

38

	1. Problem Statement
	2. Dataset
	2.1 Source of dataset:
	2.2 General description of the dataset
	2.3 How is this dataset appropriate for the problem statement
	2.4. Exploratory Data Analysis (EDA)

	3. Data Preparation & Cleaning​
	3.1 How the Dataset was Cleaned
	3.1.1 Missing Data
	3.1.2 Adding Flags
	3.1.3 Standardization
	3.1.4 Removing Vague Values
	3.1.5 Fixing Format

	3.2 Deciding Factors to Keep or Discard Columns
	3.3 Deciding Factors to Choose the Target Variable
	3.4 How Categorical Columns Were Handled
	3.5 Principal Component Analysis (PCA)
	3.6 Handling Class Imbalances
	3.6.1 Synthetic Minority Over-sampling Technique (SMOTE)
	3.6.2 Adaptive Synthetic Sampling (ADASYN)
	3.6.3 Tomek Links (TOMEK)
	3.6.4 Edited Nearest Neighbours (ENN)
	3.6.5 Why Random Under/Over Sampling May Be Superficial

	3.7 Sampling

	4. Machine Learning (ML) Models
	4.1 Logistic Regression
	4.2 Naïve Bayes
	4.3 Decision Tree
	4.4 Random Forest (RF)
	4.5 Gradient Boosted Tree (GBT)
	4.6 Support Vector Machine (SVM)
	4.7 Best ML Model Among the Six
	4.7.1 Selecting the Best Model (Random Forest)
	4.7.2 Feature Selection for Best Model (Random Forest)

	5. Discussion of Results
	5.1 Insights
	5.1.1 Evaluation of “Test” Results
	5.1.2 Hardship_reason (Figure E1)
	5.1.3 Loan Purpose Prediction (Figure E2)
	5.1.4 Grade Prediction (Figure E3)
	5.1.5 Mths_since_last_delinq (Figure E4)
	5.1.6 Home_ownership (Figure E5)

	5.2 Challenges
	5.2.1 Computational Limits
	5.2.2 Limitations of Fine-Tuning the Models
	5.2.3 Lack of PySpark Tools for Imbalanced Data

	5.3 Assumptions
	5.3.4 Dataset Accuracy

	5.4 Improvements

	5.4.1. Leveraging the Full Dataset
	5.4.2. Explore More Complex Models
	5.4.3. Threshold Optimisation
	6. How can these insights help Lending Club?
	References
	
	Appendix A: Dataset
	Appendix B: EDA Graphs
	Appendix C: Data Cleaning & Preparation
	Appendix D: Modelling
	Appendix E: Insights

